Core Methods
Complete API documentation for all ragleaf methods and endpoints.
RAGQualityChecker
Main class for quality checking and verification.
from ragleaf import RAGQualityChecker
checker = RAGQualityChecker(
api_key: str,
threshold: float = 0.8,
enable_visualization: bool = False
)
verify_citations()
Verify that citations in your RAG response match the source documents.
result = checker.verify_citations(
query: str,
response: str,
sources: List[Document]
) -> CitationResult
Parameters:
query- The user's original queryresponse- The generated RAG responsesources- List of source documents used
Returns: CitationResult object with accuracy score and details
visualize_retrieval()
Generate visualization of your retrieval pipeline performance.
viz = checker.visualize_retrieval(
query: str,
retrieved_docs: List[Document],
format: str = "html"
) -> Visualization
Parameters:
query- The search queryretrieved_docs- Documents retrieved by your systemformat- Output format: "html", "json", or "png"
optimize_chunks()
Get recommendations for optimal chunk size and overlap settings.
recommendations = checker.optimize_chunks(
documents: List[Document],
current_settings: ChunkSettings
) -> OptimizationResult
Parameters:
documents- Your document collectioncurrent_settings- Current chunking configuration
analyze_prompt()
Analyze and get suggestions for prompt optimization.
analysis = checker.analyze_prompt(
prompt: str,
context: str
) -> PromptAnalysis
REST API Endpoints
All methods are also available via REST API:
POST https://api.ragleaf.dev/v1/verify-citations
POST https://api.ragleaf.dev/v1/visualize-retrieval
POST https://api.ragleaf.dev/v1/optimize-chunks
POST https://api.ragleaf.dev/v1/analyze-prompt
Authentication
Include your API key in the Authorization header:
Authorization: Bearer your_api_key